1	$4.3^2 + 6.4^2$ or 59.45		4	M1	for squaring and adding
	$\sqrt{4.3^2 + 6.4^2}$ or $\sqrt{59.45}$			M1	dep 1st M1 for square rooting
	or 7.71(038) or 7.7				
	e.g ('7.71' + 4.3 + 6.4) × 22 or '18.4' × 22 (=404.8) or ('8' + 4.3 + 6.4) × 22 or '18.7' × 22 or '19' × 22 or '20' × 22			M1	dep M2 for a non-rounded perimeter \times 22 or 19 \times 22 accept 20 \times 22 oe
		\$418		A1	cao
					Total 4 marks

2	$8.5^2 - (8 \div 2)^2 (= 56.25)$ or $\cos x = \frac{4}{8.5}$ oe			M1	or eg $\cos A = \frac{8^2 + 8.5^2 - 8.5^2}{2 \times 8 \times 8.5}$
	$\sqrt{56.25}$ (= 7.5) or $x = \cos^{-1}\left(\frac{4}{8.5}\right)$ (= 61.927)			M1	or eg $(A=)\cos^{-1}\left(\frac{8^2+8.5^2-8.5^2}{2\times8\times8.5}\right)$ (61.927)
	oe				(other angle = 56.144)
	$8 \times "7.5" \div 2$ oe or $0.5 \times 8 \times 8.5 \times \sin "61.927"$			M1	or eg $0.5 \times 8.5 \times 8 \times \sin^{\circ}61.927$ ° oe
		30	4	A1	
					Total 4 marks

3	e.g. $(EF =)$ 12cos40 (= 9.19) or $(FD =)$ 12sin40 (= 7.71) and $(EF =)$ $\sqrt{12^2 - "7.71^{"2}}$ (= 9.19)				complete method to find <i>EF</i> (if not M2 then M1 for a correct statement involving <i>EF</i> e.g. $\frac{EF}{12} = \cos 40$)
	e.g. $\frac{"9.19"}{EG} = \tan 28$ or $\tan 62 = \frac{EG}{"9.19"}$ or $\frac{"9.19"}{FG} = \sin 28(=19.5)$ and $"19.5"^2 - "9.19"^2(=298.9)$			M1	(dep on M2) for a correct trig statement involving <i>EG</i> or complete method to find <i>FG</i> and a correct start to Pythagoras process
		17.3	4	A1	accept 17.2 - 17.3
					Total 4 marks

4	$8.5^2 + 5.6^2 (= 103.61)$		3	M1
	$\sqrt{8.5^2 + 5.6^2}$			M1
		10.2		A1 Accept 10.1 to 10.2 or better
				Total 3 marks

5	$(AC^2 =) 17^2 - 15^2$		5	M1	
	$(AC=)\sqrt{17^2-15^2} (=\sqrt{64}=8)$			M1	
	$\frac{\pi \times 8'}{2} (= 4\pi = 12.566)$			M1	dep on M2 for $\frac{\pi \times 8'}{2}$ or π
	\$10.5(C2) = 15 + 17			M1	12.5663
	·12.566'+ 15 + 17			MI	for '12.566' + 15 + 17 and no additional values
		44.6		A1	for awrt 44.6
					Total 5 marks
Alternative ma	rk scheme for 5				
	$\cos^{-1}\left(\frac{15}{17}\right) (= 28.0724) \text{ or } \sin^{-1}\left(\frac{15}{17}\right) (= 61.9275)$		5	M1	for a correct method to find one of the angles
	$15 \times \tan(28.0724) = 8$ or $15 \div \tan(61.9275) = 8$			M1	
	$\frac{\pi \times 8}{2} (= 4\pi = 12.566)$			M1	$\frac{\text{dep on M2 for}}{\frac{\pi \times 8'}{2}} \text{ or } 12.5663 \text{ or } 4\pi$
	"12.566" + 15 + 17			M1	for "12.566" + 15 + 17 and no additional values
		44.6		Al	for awrt 44.6
					Total 5 marks

or $(QS =)\sqrt{3.8^2 + 6.1^2 - 2 \times 3.8 \times 6.1 \times \cos("50.9")}$

A1 accept 4.73 – 4.74 Total 5 marks

4.74

6	$(AB^2 =) 7.5^2 - 6^2 (= 20.25)$ or eg $(BAC =) \sin^{-1} \left(\frac{6}{7.5}\right) (= 53.1)$ or $\cos(BC)$	$CA) = \frac{6}{7.5} (= 0.8)$		6	M1	a comple BAC or	rect first step to find <i>AB</i> or ete method to find angle a correct first step to find
	$(AB =) \sqrt{7.5^2 - 6^2} (= 4.5) \text{ or } (AB =) \frac{1}{\tan^{"}}$ or $(AB =) 7.5 \cos^{"} 53.1^{"} (= 4.5)$ or	6 53.1" (= 4.5)			M1	angle <i>B</i> for a cor angle <i>B</i>	nplete method to find AB or
	$(BCA =)\cos^{-1}\left(\frac{6}{7.5}\right) (= 36.8)$						
	(Area <i>ABC</i> =) $\frac{1}{2} \times 6 \times "4.5"$ (= 13.5)				M1	or [their	labelled <i>AB</i>] labelled <i>BCA</i>]
	or (Area <i>ABC</i> =) $\frac{1}{2} \times 6 \times 7.5 \times \sin("36.8")$ (=13.47 or 13.5)				1	$\times 6 \times [$ their labelled <i>AB</i> $]$ or
							.5×sin[their labelled <i>BCA</i>]
	(Area <i>DAC</i> =) 31.5 - "13.5" (= 18) or "13.5" + 0.5 × 7.5 × <i>AD</i> = 31.5 oe				M1		on previous M1) 1.5 – [their area]
	(AD =) ("18" ÷ 7.5) ÷ 0.5 oe				M1		nplete method to find <i>AD</i> , ent on correct working
			4.8		A1		.78 - 4.81
							Total 6 marks
7	$(\operatorname{area} PQS =) \frac{1}{2} \times 6.1 \times 3.8 \times \sin P = 9$ or (area PQRS =) $6.1 \times 3.8 \times \sin P = 18$ $eg (\sin P =) \frac{9}{\frac{1}{2} \times 6.1 \times 3.8} \left(= 0.776 \text{ or } \frac{900}{1159} \right)$ $18 \left(= 0.776 \text{ or } \frac{900}{1159} \right)$	$\frac{1}{2} \times 6.1 \times SX = 9 \text{ or}$ $(SX =) \frac{9}{\frac{1}{2} \times 6.1} (= 2.5)$ or $6.1 \times SX = 18$ or $(SX =) 18 \div 6.1 (=$ $(PX^2 =) 3.8^2 - "2.95$ or $(PX =) \sqrt{3.8^2 - "2.95}$	2.95)	· · · ·		5 M1	correct equation for the area of the triangle or parallelogram or a calculation to find the height of the parallelogram (where X is the point vertically below S on PQ) correct expression for sin P OR for start of Pythagoras method to find length of
	or $(\sin P =) \frac{18}{6.1 \times 3.8} \left(= 0.776 \text{ or } \frac{900}{1159}\right)$ $(P =) \sin^{-10} 0.776" (= 50.9)$	$(QX =)6.1 - \sqrt{5.73}$ or $(QX =)6.1 - 2.3$		·		M1	<i>PX</i> (where <i>X</i> is the point vertically below <i>S</i> on <i>PQ</i>)
	$(QS^{2} =)3.8^{2} + 6.1^{2} - 2 \times 3.8 \times 6.1 \times \cos("50.9") (= 22.4)$ $(QS^{2} =) \sqrt{2.8^{2} + 6.1^{2} - 2 \times 2.8 \times 6.1 \times \cos("50.9")} (= 22.4)$	$(QS^2 =)$ "2.95" ² +" or $(QS =)\sqrt{"2.95"}$				M1	$\frac{QX}{(\text{or } QS)}$

8	$12.8^{2} + x^{2} = 16^{2} \text{ oe or}$ $163.84 + x^{2} = 256 \text{ or}$ $(x^{2} =) 16^{2} - 12.8^{2} (= 92.16) \text{ or}$ $(x^{2} =) 256 - 163.84 (= 92.16)$		4	M1 for applying Pythagoras theorem correctly Allow $\cos^{-1}\left(\frac{12.8}{16}\right) (= 36.9)$ and $\frac{x}{\sin(36.9)} = \frac{16}{(\sin 90)}$
	$(x=)\sqrt{16^2 - 12.8^2} (=\sqrt{92.16}) (=9.6)$ or $(x=)\sqrt{256 - 163.84} (=\sqrt{92.16}) (=9.6)$			M1 for square rooting Allow $x = \frac{16}{(\sin 90)} \times \sin(36.9)$
	(12.8 - "9.6") + "9.6" + "9.6" + 16 + 16 + 16 oe			M1 (dep on M1) for a complete method to find the perimeter
		70.4		A1 oe e.g. $\frac{352}{5}$
				Total 4 marks

9	$17.5^2 - 14^2 (= 110.25)$	4	M1 or for use of cosine rule to find one of the angles
			eg $28^2 = 17.5^2 + 17.5^2 - 2 \times 17.5 \times 17.5 \times \cos A$
			or eg $\cos B = \frac{14}{2}$
			17.5
	$\sqrt{17.5^2 - 14^2} (= 10.5)$		M1 or for rearranging the cosine rule to
			$17.5^2 + 17.5^2 - 28^2$
			eg cos $A = \frac{11.5 + 11.5 - 26}{2 + 12.5 + 12.5}$ ($A = 106.26$)
			2×17.5×17.5
			or eg $B = \cos^{-1}(\underline{14}) (= 36.86)$
			17.5
-	0.5 × 28 × "10.5" oe		M1 or for $0.5 \times 17.5 \times 17.5 \times \sin 106.26$ oe
			eg $0.5 \times 17.5 \times 28 \times \sin 36.86$
			[clear use of Heron's formula:
			M1 for S = $0.5(17.5 + 17.5 + 28)(=31.5)$
			M2 for $\sqrt{"31.5"("31.5"-17.5)^2("31.5"-28)}$ oe]
		147	A1 accept awrt 147
			Total 4 mark

10	$(54-24) \div 2$ (=15) [may be marked on diagram]		5	M1			
10	(37 - 21) + 2(-13) [may be marked on diagram] $(15 - (24 \div 2)^2 = 81)$			M1	ft their "15" (if > 12)		
	$[\text{height} =] \sqrt{"15"^2 - (24 \div 2)^2} (=9)$			M1	ft their "15" (if > 12)		
	(24×"9")÷2 oe			M1	figures must be from correct working		
	Correct answer scores full marks (unless from obvious incorrect working)	108		A1	allow 107.9 – 108.1		
	ALTERNATIVES BELOW				Total 5 mark		
10	$(54-24) \div 2$ (=15) [may be marked on diagram]		5	M1	•••		
	or $x = \cos^{-1} \left(\frac{"12"}{"15"} \right) (= 36.86)$			M1	ft their "15" (if > 12)		
	or $y = \sin^{-1} \left(\frac{24 \div 2}{"15"} \right) (= 53.13)$				[using Hero's formula S = 0.5×54 (= 27) and 27 × (27 – 24) × (27 – "15") × (27 – "15")		
	or $A = \cos^{-1}\left(\frac{15^2 + 15^2 - 24^2}{2 \times 15 \times 15}\right) (= 106.2)$						
	or $B = \cos^{-1}\left(\frac{15^2 + 24^2 - 15^2}{2 \times 15 \times 24}\right) (= 36.8)$						
	or "12"tan"36.86" (= 9) (allow 8.9 for these) "12" ÷ tan"53.13" (= 9)			M1	ft M2 for their $0.5 \times 24 \times "15" \times \sin"36.86"$ or		
	or "15" $\times \sin "36.86" (= 9)$				"15" $0.5 \times 15" \times 15" \times \sin 50.80$ or "15" $0.5 \times 15" \times (15" \times \sin 2 \times 53.13)$ or		
	or " 15 " × cos " 53.13 " (= 9)				(if $> 0.5 \times 15" \times 15" \times sin(2" 106.2")$ or		
					$12) \qquad 27"(27"-24)(27"-15")(27")(27"-15")(27"-15")(27"$		
	(24×"9")÷2 oe			M1	$\gamma 21 (21 - 24) (21 - 15) (21 - 15)$		
	Correct answer scores full marks (unless from	108		A1	allow 107.9 – 108.1		
	obvious incorrect working)						
					Total 5 mark		

11	eg		5	M1	for a correct start to the method to find <i>AB</i>
	$(AB^2 =)6^2 + 6^2 (= 72)$				for a context start to the method to find his
	or $\sin 45 = \frac{6}{(AB)}$ or $\cos 45 = \frac{6}{(AB)}$ or				
	or $(AB^2) = 6^2 + 6^2 - 2 \times 6 \times 6 \times \cos 90$				
	eg			M1	for a complete method to find the length of
	$(AB =)\sqrt{6^2 + 6^2} (=\sqrt{72} \text{ or } 6\sqrt{2} \text{ or } 8.48)$				AB
	or $(AB =) \frac{6}{\sin 45} (= \sqrt{72} = 6\sqrt{2} = 8.48)$				
	or $(AB =) \frac{6}{\cos 45} (= \sqrt{72} = 6\sqrt{2} = 8.48)$				
	or $(AB =)\sqrt{6^2 + 6^2 - 2 \times 6 \times 6 \times \cos 90}$				
	eg $\pi \times 6 (= 6\pi \text{ or } 18.8)$			M1	(indep) for a method to find the circumference of one whole circle or the
	or $\pi \times 6 \div 2 (= 3\pi \text{ or } 9.42)$				arc length of one semicircle seen (may be
	or $\pi \times$ "8.48"(= 26.6) or $\pi \times$ "8.48"÷2 (=13.3)				embedded)
	eg 2×" 3π "+"13.3"			M1	for a complete correct method to find the
	or "9.42" + "9.42" + "13.3" or "18.8" + "13.3"				perimeter of the shape
1 	Correct answer scores full marks (unless from obvious incorrect working)	32.2		Al	accept answers in the range $32.1 - 32.3$
					Total 5 marks

12	(a)	$\sqrt{4^2 + 9^2 + 15^2} \left(= \sqrt{322} = 17.9(443) \right)$ or		2	M1
		$\sqrt{15^2 + 4^2} \left(= \sqrt{241} = 15.5(241) \right)$ and			
		$\sqrt{9^2 + ("\sqrt{241}")^2} (= \sqrt{322} = 17.9(443))$			
			17.9		A1 awrt 17.9

13	$7.2^2 + 5.4^2 (= 81)$	4	4 M1	for correct first step using Pythagoras	M1 for reaching one step from the length of AB if using trig eg
					$(EAB =) \tan^{-1} \left(\frac{5.4}{7.2} \right) (= 36.8)$
					and $\sin("36.8") = \frac{5.4}{AB}$
	$\sqrt{7.2^2 + 5.4^2}$ (= 9)		M1	for complete Pythagoras method to find length of <i>AB/DC</i> check the diagram for sight of 9, <i>DC</i> marked as 9 implies M2	M1 for complete method to find the length of AB/DC eg $\frac{5.4}{\sin("36.8")}$ (=9)
	7.2 + 5.4 + 6 + "9" + 6 oe		M1	for a complete method to find the pe	rimeter
	Correct answer scores full marks (unless from obvious incorrect working)	33.6	Al	oe	
				•	Total 4 marks